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LETTER TO THE EDITOR 

Flat anisotropic models of the universe with torsion and 
without singularity 

B Kuchowicz 
Department of Radiochemistry and Radiation Chemistry, University of Warsaw, 02-089 
Warszawa, ul Zwirki i Wigury 101, Poland 

Received 13 December 1974 

Abstract. The intrinsic angular momentum of the cosmological substratum is able to 
prevent the appearance of the cosmological singularity in the Einstein-Cartan theory. 
Conditions for this to occur in Bianchi type I cosmologies are given, and several new cosmo- 
logical models whose anisotropy diminishes with expansion are explicitly constructed. 

Perhaps the most natural extension of the ideas of general relativity is to be found in the 
Einstein-Cartan (EC) theory which was first proposed by Cartan (1923), and has 
recently been developed by Trautman (1973a, b) and others ; a complete bibliography 
to this problem may be found in the survey of Hehl (1973). The differentiable manifold 
in this theory has an .asymmetric affine connection; the antisymmetric part of this 
connection is the torsion tensor which is algebraically related to the spin density tensor. 
The introduction of torsion is here equivalent to an introduction of extremely short- 
range repulsive forces which are able to prevent in principle the cosmological singu- 
larity. This was shown first by Kopczynski (1972) for the unphysical situation of a 
spherically symmetric distribution of spinning dust; later it was shown that non-singular 
cosmological models of the Bianchi I to VI11 types are possible (Tafel 1973). Though the 
unphysical assumption of a spherical symmetry for the metric tensor was abandoned in 
the latter case, the results were obtained still with the help of the assumption of spin 
conservation which is only a sufficient condition for the validity of the generalized 
Bianchi identities in the EC theory (Kuchowicz 1975), and which unnecessarily restricts 
the classes of admissible solutions. In addition, it may prove useful to derive exact 
solutions for cosmological models in order to show that the admissible classes are not 
empty. In the following, with a metric of the form : 

( 1 )  
general results for Bianchi type I models are to be derived when the classical description 
of spin is used. This description presents the three-index tensor of spin Siik in terms of the 
standard tensor of the density of angular momentum S j e :  Si jk  = Sjkul .  Here ui is the 
velocity vector of matter, and we have uiui = 1, Sjkuk = 0. We use co-moving coordinates, 
and the x axis is the spin-alignment axis, so there remains the only spin density tensor 
component S23 = -S3,, which is linearly expressed through the torsion tensor com- 
ponent Q423. (The index assignments to the coordinates are obvious: x1 = x, x2 = y ,  
x3 = z ,  x4 = t.) The energy-momentum tensor is that of a perfect fluid, and it is useful 

ds2 = -X2(t)dx2 - Y2(t)(dz2+dy2)+dt2, 
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to define a main-scale factor R(t) with the help of the volume expansion 0 of the fluid 
lines : 

R 1  
- = -0. 
R 3  

Here, as in the following, a dot denotes differentiation with respect to the time derivative. 
R(t )  corresponds to a generalization of the radius function in homogeneous and isotropic 
(Robertson-Walker) models, and for our metric (1) it is equal to R(t) = (x(t)Y’(~))’’~. 

The system of EC equations 

may be separated out into a single equation for the shear 0, and two equations yielding 
energy density p and pressure p in terms of 0, S , ,  and R and its derivatives. By equating 
the two expressions for p in (3) to each other we obtain the first integral which is just the 
shear : 

where C is a constant, and the set (3) is reduced to : 

It is seen easily that the light velocity c is equal to unity in our units. An integration of the 
system of equations ( 5 )  may be performed under the assumption of a linear equation of 
state : 

p = (.,- I 1)P (6) 

with 1 < 
integral of equation (6) is now 

< 2, as is often done in general relativity (eg Vajk and Elgroth 1970). A first 

+(?-2) (4~G)’  (S2,(R))’R3(-’ dR = D. (7) J R2R3,-2-iC2R3z-6 

The behaviour of the scale-factor R(t) depends on whether the shear does vanish or not, 
and on the way the spin density S,, changes with a change of R : 

So = constant. (8) so 
’23 = 5‘ 

We are able to distinguish four cases of behaviour provided So # 0 :  

singularity never occurs. This is the case studied by Trautman (1973b). 
(i) Shear 0 = 0, and spin conservation (corresponding to 6 = 3 in equation (8)). A 
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(ii) Shear Q # 0, and spin conservation. No singularity occurs provided we have the 
condition : 

A 3 (4nGSJ2 - C2 > 0. (9) 

(iii) Shear Q = 0, and no spin conservation, ie 6 # 3. A singularity does not occur 

(iv) Shear Q # 0, and no spin conservation. No singularity occurs if 6 > 3. 
Cases (iii) and (iv) give new sets of solutions. A singularity is avoided each time when 

the contribution from the aligned spin density to the matter density and pressure over- 
whelms all other contributions in the initial stages of evolution of the universe. A non- 
conservation of the spin density may be interpreted eg as a continuing decrease of the 
ordering of angular momentum of galaxies (or other particles of the cosmological 
substratum) ; this would be a quite natural process. 

Exact solutions of equation (7) with spin conservation may be obtained easily for the 
two sequences of values of the parameter y :  y = 1 + n / ( n +  l), and y = 2 - 2 / ( 2 n +  3). An 
exact solution for a dust universe (7 = 1) was presented by Kopczynski (1973); below we 
give the solutions for some other values of y. 

This is the case studied by Kopczynski (1973). 

provided we have 6 > $y. 

(a) y = 4 (corresponding to a radiation-filled universe) : 

[ (DR2 -4A) ’ i2+D’ i2R]4A ~ X ~ [ ( D R ~ - ~ A ) ” ~ D ~ ’ ~ R ]  = e2‘ (10) 

The solutions for y > 2 are those for an ultrarelativistic equation of state ; we see that a 
singularity can be prevented in them. But for extremely stiff matter (y = 2 )  a singularity 
cannot be avoided in this way, as the situation is reduced back to that of general relativity 
(the spin-induced terms in the equation of state cancel). 

An exact solution in the case of spin non-conservation is obtained for 6 = 3y : 

It is characterized also by a minimum nonzero critical radius of the universe along the 
lines of Trautman’s reasoning (Trautman 1973b). 
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